
Duplicate Issue Detection
for the Android Open Source Project

Kasthuri Jayarajah, Meera Radhakrishnan, Camellia Zakaria
School of Information Systems, Singapore Management University, Singapore

{kasthurij.2014, meeralakshm.2014, ncamelliaz.2014}@phdis.smu.edu.sg

ABSTRACT

The Android Open Source Project(AOSP) has seen tremendous
traction over the past decade, and as such, the bug repository is
growing in scale. With this growth, the effort required for project
members to triage incoming new reports to identify whether it is
a duplicate issue that has already been addressed, or receiving at-
tention, is also on the rise. In this work, we create dataset of issues
from the Android issue tracker, and use standard IR techniques such
as VSM and LDA to understand their capability in such similar is-
sue retrieval. Further, we combine VSM and LDA to evaluate its
usefulness. We find that, overall, VSM performs better with this
dataset.

CCS Concepts
•Information systems → Data mining; •Software and its engi-
neering→ Software post-development issues;

Keywords
Duplicate Issue Detection; Android Open Source Project; VSM;
LDA

1. INTRODUCTION
The Android OS has steadily gained popularity, owing much to

its open source nature to enable OS support for multiple device
manufacturers. Moreover, its low barrier to entry into the market
place allows for more independent developers to sell their mobile
applications. According to a report from IDC in 2015 [2], the mar-
ket share of Android was roughly 83%, with its closest competi-
tor, Apple iOS, only securing roughly 14% of the market share.
Catering to such mass, the Android Open Source Project (AOSP)
has a web portal to allow developers and users report issues and
bugs related to the OS. As with most discussion forums and bug
trackers, the Android Open Source Platform issue tracker is also
disadvantaged by multiple users reporting the same issues. This
has implications for both stakeholders: issue reporters (users) and
Android project members to whom the issues are assigned. Users

who encounter legitimate issues will go over the history of simi-
lar issues experienced by other users and members, which typically
follows with a solution. On the other hand, new duplicated issues
submitted by project member are automatically tagged to allow for
a continuous stream of solution.

We seek to improve accessibility of such resources for both stake-
holders. First, users can expect to find a list of similar issues logged
by different users. These documents will be ranked based on rele-
vance or order of similarity to the original queried issue. Our ap-
proach filters duplicates and retrieves original documents related to
an issue. We make the following key contributions:

1. By systematically scraping the Android Issue Tracker and
the Android API documentation, we make available crawlers
for extracting issues and comments from the official Issue
Tracker, and packages and classes information from the An-
droid API documentation to the research community. In ad-
dition, we also make available a subset of the extracted data
publicly. Unlike popular bug repositories like Mozilla 1 and
software help forums such as StackOverFlow 2, bug reports
for the AOSP has not been studied previously.

2. We provide quantitative insights on how well existing in-
formation retrieval techniques perform on the issues dataset
comprising of all available issues between November 2007
and March 2015 for the AOSP.

3. We evaluate the state-of-the-art IR techniques such as VSM
and LDA in duplicate issue detection for Android issues and
report our findings. Overall, we find that vector space rep-
resentations perform better than topic modeling. Further, we
propose a technique to combine both VSM and LDA lever-
aging the Android API dataset.

2. RELATED WORK
Much research has been dedicated to automating the detection of

duplicated bug reports. Nilambari et al. surveyed several method-
ologies and found two primary approaches for duplicate detection.
New issues are either categorized as duplicates or ranked based on
feature similarity of certain features [7].

Sun et al. used a Support Vector Machine (SVM) trained model
to classify new bug reports into duplicates class or other class [10]
and extended the work to using BM25F, which considered textual
data like summary and description, to differentiate the degrees of
importance for a bug report [9]. Similarly, AnhTuan et al. com-
bined topic modeling technique, Latent Dirichlet Allocation (LDA)

1https://bugzilla.mozilla.org/
2https://archive.org/details/stackexchange

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.

SoftwareMining’16, September 3, 2016, Singapore, Singapore
c© 2016 ACM. 978-1-4503-4511-8/16/09...$15.00

http://dx.doi.org/10.1145/2975961.2975965

24

and textual based BM25F similarity techniques for duplicate detec-
tion on datasets from Open Office, Mozilla and Eclipse [6]. Their
approach achieved an accuracy that is higher than any existing tech-
niques for duplicate detection. But this may not work well with
very large amount of data, as the recall would go low.

In other extended work, Alipour et al. included contextual fea-
tures such as software architectural words and nonfunctional re-
quirement words to improve bug report de-duplication methods [4].
Jalbert et al. poses the problem of detecting duplicate reports as a
linear regression task [5]. Low efficiency is the main drawback of
these machine-learning techniques. A recent work [3] followed the
duplication bug report detection method proposed by Alipour et.al
and extended on it to partially automate the extraction of the con-
textual features. They evaluated their technique on datasets from
years 2007 to 2012 of Open Office, Mozilla, Eclipse and Android,
with the performance of their method being slightly worse on An-
droid dataset.

The work we present supports the effort to build a duplicate-free
bug reporting system for Android Open Source Project (AOSP), as
how open source bug repositories have been addressed. By adopt-
ing VSM and LDA on the AOSP dataset, we believe that it can
help reduce the triaging efforts of users seeking information and
developers fixing bugs related to Android.

3. PROBLEM DEFINITION
In this section, we formally introduce our problem. The dupli-

cate issue detection problem can be approached as an automatic
selection of relevant issue (Definition 1), or semi-automatic solu-
tion where a set of relevant issues are retrieved by the detector and
human intervention is followed to pick the most relevant issue (Def-
inition 2). We define the following:

Definition 1: Given a set of issues or bug reports, R, and a new
incoming issue or report q, find r ∈ R for which q is similar to r.

Definition 2: Given a set of issues or bug reports, R, and a new
incoming issue or report q, find r1,r2, ...,rk ⊆ R which are the top-k
issues similar to q.

In this work, we take the semi-automatic approach as defined in
Definition 2.

4. DATASET
In this work, we consider two sources of data. The primary

source of data is the Issue Tracker of the Android Open Source
Project 3 which is an online portal that allows developers and pro-
grammers to report bugs and issues with the Android platform.
The secondary source of data is the online documentation of the
Android platform which provides descriptions of the packages and
classes included in the platform 4.

The issues available on the Issue Tracker are not available as a
data dump for download. Hence, we wrote a crawler script using
the Beautiful Soup (a Python library) to scrape the web portal to
scrape off the issue topic, description, final status, stars, associ-
ated comments, etc. For the period between November, 2007 and
March, 2015, a total of 134,567 issues were scraped. Among them,
for 4190 of the issues with status “Duplicate", the issue IDs of the
related original issues were also scraped. These (duplicate,original)
pairs form our ground truth for evaluation purposes (see Section 7).
Henceforth, we call the set of “Duplicate" issues as queries, Q. For
each query q ∈ Q, the associated original issue is g ∈ G, where G
is the set of original issues who have a linked duplicate issue.

3https://code.google.com/p/android/issues/list
4http://developer.android.com/reference/packages.html

Similarly, the Android documentation is also not available on-
line for direct downloads. We wrote two crawler scripts to, one for
extracting package information, and the other for extracting class
information. For each of the 236 packages, we scraped the package
summary (if available) and the classes associated with the package.
For each of the 4058 classes, we extracted the class summary, meth-
ods, constants and any other description available. In Section 6, we
describe in detail how this secondary data is used.

We make available the code for the crawlers and a subset of our
data consisting of 3500+ issues (and 47,000 related comments) for
public access5.

5. PREPROCESSING
In this section, we describe the various steps that we performed

for pre-processing our primary dataset from AOSP as well as the
secondary dataset from Android API.

5.1 Text and Code Separation
A filed issue/query typically consists of text, code and traces.

While every piece of textual content is important, standardizing all
inputs is a good approach when developing a search recommenda-
tion system. This ensures consistency and allows for simpler pre-
processing requirements. In separating these entries, we identify
similar structures for each type of content. A simple Java program
was written to extract them in the order of these steps as follow.

5.1.1 Separate Traces
Android follows specific patterns for its logs in that it consists

of keywords such as “D/ - Debug”, “V/ - Verbose”, “W/ - Warn”,
“I/ - Info”, “E/ - Error”. This represents the system component
from which the error originates and will be reflected when printing
messages using the Logcat class. Accordingly, the program singles
out lines based on regular expressions that represent this format.

5.1.2 Separate Code
Similarly using regular expressions, the program extracts code

and comments from the remaining content. A straightforward ap-
plication of regex like “/\ ∗ ([∗]|[\r\n]|(\ ∗+([∗/]|[\r\n]))) ∗ \ ∗
+/”, is used to disassociate comments. Further, a number of rules
were set to identify code. This includes (1) validation of code
blocks (2) lines containing “=” and endsWith “;”, (3) lines that
contain characters such as “public String”, “private int” and many
more. A single regular expression pattern may not always achieve
an intended result. In many of these cases, a code is extracted based
on a combination of regular expression in a simple parser.

After separating out code and traces, we were essentially left
with content, categorized as “Text”.

5.2 Data Cleaning
After separating out text and code from the issue description, we

considered the issue topic and the textual description for further
analyses. As a result of scraping using html tags, the issue descrip-
tions were left with URLs and ad-hoc html markups for certain
issues. These were removed from the data using Regex patterns
using Java. In addition, removed any remaining punctuation marks
before proceeding.

5.3 Spam Removal
From our preliminary analysis of the dataset, we noted that there

are many issues that are spam or has irrelevant content. We cleaned
our dataset by removing these spam issues. This was done in two
5https://github.com/oscar4arr/AOSP-DuplicateIssueDetection

25

Table 1: Examples of word stemming.
Sample words Stem

“discovery", “discovering", “discoverable" discoveri
“device", “devices" devic

ways: (1) the issues already marked in AOSP as Spam was re-
moved, (2) we created a bag of words from the commonly occur-
ring words in spam contents and removed all the issues containing
those words in either the issue topic or issue detailed description.
For example, “black magic”, “astrology”, “marriage specialist” are
some of the words that frequently occurred in spams. Among the
total issues, 22% were spam contents.

5.4 Tokenization
As described previously, we evaluate multiple techniques for re-

trieving similar documents. For LDA, MALLET [1] provides a
command line option that handles tokenization. However, for our
own implementation of VSM, we needed a tokenizer. To stan-
dardize the bag of words across the techniques (to make sure all
techniques worked using the same bag of words), we used an in-
termediate representation of the MALLET output to convert each
document into a bag of words. To this end, we used the Java API
provided by MALLET. In particular, after reading in every issue
using the CSV Iterator object and passing through the relevant in-
stance pipes, we use the Al phabet object to retrieve the tokenized
words present in the issue.

5.5 Stemming
One key observation from the issues were that they contain nat-

ural language in that a word could be expressed in many forms.
For example, in describing an issue regarding Bluetooth connectiv-
ity, we observed texts containing multiple words such as “connect",
“connecting", “connectivity", etc. all of which stem from the same
root “connect". Hence, we used the stemming API from Snowball6

to stem the tokenized words. Table 1 lists some common examples
from the Android issues.

5.6 Stopword Removal
Initially, we used the standard English stop words provided by

MALLET for removing stop words. However, we observed that
the list of words were too generic. To this end, we tried to identify
the most common words across the set of issues, and adding them
to the list of stop words. We used the Inverse Document Frequency
(IDF) of the words to quantify the rarity or information value of a
word where the IDF of a word w is defined as IDFw = log(N/nw).
Here, N is the total number of words and nw is the number of doc-
uments the word w appeared in. In Figure 1, we plot the CDF of
the IDF of all words in the issue set. The x-axis is the logarithmic
IDF and the y-axis is the cumulative frequency. In Algorithm 1,
we outline the steps we took to identify the threshold IDF (below
which are “common" words added to the existing stop words list).
By varying the threshold systematically, we increasingly add more
words to the stop word list and observe the resulting recall by run-
ning the dataset through VSM (explained in Section 6). We finalize
the threshold value as 4 by picking the value that maximizes the
recall (See Section 7).

5.7 Frequent Sentences Removal
In AOSP tracker, the issues are mainly classified into 14 types –

for example, ‘User bug report’, ‘Developer bug report’, ‘Tools bug

6http://snowball.tartarus.org/

Figure 1: IDF of all words in the dataset.

Algorithm 1 Stop Words Expansion algorithm
for i = 1 to 10 do

Step 1:
Select words w with id f ≤ i to set W
Add W to the stop words list

Step 2:
Run VSM and choose top-k similar issues for the query

set Q
Calculate and store recall

end for
Choose i with the highest recall and retain Wi as the expanded
stop words list

report’, ‘Android Studio bug’ and ‘Jack bug report’. Each of these
issues has a template with a default issue description. We consider
these issue descriptions as frequent sentences occurring in most of
the issues. We remove these terms from the actual description of
issues for our processing.

6. APPROACH
In this section we describe the different approaches that we fol-

lowed for duplicate bug report detection from the Android Open
Source Tracker. Figure 2 shows our overall methodology and steps
involved.

6.1 Vector Space Model (VSM)
Vector space model (VSM) [8] is a technique that has been exten-

sively studied and applied in information retrieval over the years.
Fundamentally, text information is made up of documents, in this
case are issues, and terms, which are processed words in each doc-
ument. In its entirety, Natural Language processing struggles with
two problems, namely, Polysemy7 and Synonymy8.

Accordingly, this technique does not rely on natural language
processing, but rather, on term occurrences in a vector. VSM mod-
els the documents (issues) and queries as sets of terms. Each term
will be individually assigned to a weight. This allows semantic
content to be retained as much as possible. Then, VSM computes
7Polysemy is having the same word occur in document with dif-
ferent meanings. For example, “ant” could refer to an insect or the
ANT wireless communication protocol.
8Synonymy is having different words to describe the same thing.
For example, “bug”, “issue”, and “problem” can all be used to de-
scribe an error

26

Figure 2: Approach

the cosine distance measure between document and query vectors.
This cosine value represents the relative influence of terms in each
document with a query from a scale of 0 to 1; 1 being identical,
otherwise their values differ.

There are many ways to derive weights mentioned in the IR liter-
ature. For this project, we used the TF-IDF weighting scheme. TF-
IDF is widely preferred as it typically achieves higher precision-
recall compared to other weighting approaches.The following de-
scribes the steps taken to calculate the cosine distance measure.

6.1.1 Term-Frequency (TF)
For each document, we first calculated the term frequency of

each term in a document. Additionally, a global record of the term
frequency for all terms in the collection of documents is kept for
calculating the cosine similarity.

6.1.2 Term-Frequency Inverse-Document-Frequency
(TF-IDF)

The scarcity of a term across the entire document collection is
measured to be important. The inverse-document frequency is de-
scribed to favor this. Additionally, we considered length normal-
ization for the documents. Longer issues are more likely to have
higher term frequencies. This increases the probability of a docu-
ment matching a query. By normalizing the length, this gives equal
chances for both long and short issues to be picked. IDF weights
of terms (in natural log) is calculated as follows:

T Ft = n/N

where n = Occurrence count of a term and N = Total number of
terms in the document

6.1.3 Cosine Similarity
To calculate the cosine similarity, we used the following equa-

tion. Finally, the cosine similarity is sorted in descending order to
retrieve only the top 20 relevant documents.

similarity(x,y) = cos(θ) = (x.y)/(|(|x|)| ∗ ||y||)

where x = query vector and y = document vector
VSM is used as our baseline method for comparing precision and

recall with other approaches.

Figure 3: MALLET Commands for Topic modeling

6.2 Latent Dirichlet Allocation (LDA)
To mine topics for the corpus set of issues that we obtained

from the Android Open Source project (AOSP) we chose the latent
Dirichlet allocation model and used its open source implementation
available in Java with the tool called Mallet (“MAchine Learning
for LanguagE Toolkit”) [1]. LDA characterizes each topic it gen-
erates as a probability distribution over the main keywords that the
topic is related to and is referred to as word distribution over a topic.
A probability distribution over topics for each of the document is
also generated as each document can refer to several topics.This is
called as the topic distribution or topic proportions. The number of
topics to be mined is a model parameter and determined based on
the dataset and its relevance to different topics. LDA also has cer-
tain other model parameters called Dirichlet priors α, β, ϕ which
are generally obtained by a technique called Gibbs Sampling.

In our work, the bag of words obtained from the set of issues
after extensive preprocessing as explained in previous section is
used to generate the topic model using LDA. We divided the AOSP
dataset into two: (i) original set of issues and (ii) set of issues that
are already marked as ’Duplicates’ to any of the original issue. In
the following, we use the generic term ’document(s)’ to refer to set
of original issues and ’query’ to refer to the set of duplicate issues.
The steps involved in mining topics is as follows:

6.2.1 Generating the Model
A set of feature instances or feature vectors are generated as a

MALLET file by taking in the corpus bag of words from each of
the documents as input. We use the above command to generate
our initial topic model.

In the command for topic model generation (See Figure 3 Com-
mand 1), we give the path to the input directory, which has number
of files relating to our set of issues. Each one of these files has
the bag of words related to the particular issue which we gener-
ate after all our pre-processing steps. Therefore, the entire folder
can be considered to be a corpus of data. We use MALLET to
convert this corpus of bag of words to single MALLET format file
issues_topics.mallet to generate the topics. Using the import com-
mand all the files from input directory are imported and then trans-
formed into MALLET file, which is our model based on the set of
issues. The ‘keep-sequence’ command preserves text in order of
their original appearance. With the ‘remove-stopwords’ command,
frequent or common words found in the default English stop-words
dictionary are stripped out.

27

6.2.2 Training the Model
The training instances from the model generated is used to train

the topics. We fixed the number of topics to be 120 based on the
number of Android packages with summary described, obtained
from our secondary dataset of Android API. A topic inferencer is
created which can be later used to infer topics from an existing
model for new set of data. We did hyper parameter optimization
of the Dirichlet prior α by setting the optimization interval to 20.
Therefore, LDA will automatically adjust the parameters during
optimization so as to improve the accuracy of the model. Upon
training, three main outputs are generated. The first one is a ‘word-
topic’ file with the corpus of words in all set of documents and the
topics it belongs to. The second file is the ‘topic_keywords’ file
which lists top keywords for each of the 120 topics generated and
last one is the ‘topic-proportion’ file which includes breakdown, by
percentage, of each topic within each original document file.

The command used for model training (See Figure 3 Command
2) takes as input the generated issues_topics.mallet file, and runs
the topic model routine using the ‘train-topics’ command. It trains
the MALLET to find 120 topics. Every word from the corpus of
data is related to the topics that it belongs to and is outputted as
a compressed file issues_topics_state_new.gz. We obtain the top
keywords for each of the 120 topics in the output file issues_topics_
keys.txt using the ‘output_topic_keys’ command. The issues_topics.txt
file has the topic proportions for each topic within each original
issue file. A topic inferencer file is created using the ‘inferencer-
filename’ command so as to use during the inference of topics for
new set of data.

6.2.3 Inferring Topics
In this step, we use MALLET to infer topics for the set of du-

plicate issues by using the already trained model. The output ob-
tained is a file with topics inferred for each of the queries and also
a topic proportion within the query set. For each query, the topics
are ranked in descending order of their topic proportion showing
the most relevant topic first.

In this first step of topic inference (Figure 3 Command 3), we
take the files in queries directory as input (which is the set of du-
plicate issues), we generate a new MALLET topic model. To make
sure that the new model created is compatible with the trained
model, we used the ‘use-pipe’ option to specify our initial trained
model on the set of issues.

For inferring topics for the set of duplicate issues, the queries.mallet
model and the inference file are taken as input and topics are in-
ferred using ‘infer-topics command (See Figure 3 Command 4).
The output obtained is a file with set of topics and their breakdown
by percentage within each of the topics inferred for the duplicate
issues.

6.3 Combination of LDA and VSM
We extended the baseline VSM approach by combining it with

the LDA for Android API. We first trained a model using LDA
by taking the Android API package summary as the input. We
obtained a new set of topics and top keywords based on the API
package summary and also distribution of each of the topic.

Recall that the VSM approach calculates the relatedness of a
document to the query based on the frequency of terms. In this
approach, we modified VSM to instead measure similarity based
on Android topics, using words in the same topics as synonyms.
For example, the topic, “android.bluetooth”, consists of a differ-
ent set of synonyms compared to topic, “android.appwidget” (See
Table 2).

Table 2: Topics from LDA
android.bluetooth android.appwidget

Bluetooth View
devic handl

transfer screen
ble draw

energy design
low screen
gatt dynamiclayout

socket appwidgethost
connect proxim

Table 3: Topics from LDA

Topic X Topic Y
voic, doesn, messag, googl, latest send, messag, google, voic,
instal, contact, messag, text, rout, crash, program, latest

applic, behaviour, applic, told,
friend, peopl, confus

In doing so, we would need to consider the ‘value proportion’ of
a document and a query to a topic.The value proportion of topics is
based on our second approach, LDA.

7. EVALUATION
In this section, we introduce the performance metrics used in our

evaluation and summarize our findings from the three techniques.

7.1 Performance Metrics
As briefed in Section 4, the set of queries, Q, is the set of issues

with status “Duplicate". The corresponding one-to-one set of orig-
inal issues is the set G. We define Recall in two ways: (1) based
on the exact match of the similar issues retrieved by the techniques
against the set G, and (2) based on manually sampling a subset of
the issues (roughly 10%), and marking whether the most similar
issue retrieved is similar in content with the query even though it is
not an exact match from G.

We formalize the two metrics in the following manner.
For (1), where the set of top-k similar issues retrieved is, Rk, then

Recallk =
|Rk ∩G|
|Q|

In the case of manual sampling (2), where the set of most similar
issues (top-1) retrieved for each q ∈Q is S, and the subset S′ ⊆ S is
relevant to Q, then,

Recall =
|S′|
|Q|

Further, in the case of (1) (exact matching), we also measure the
Mean Average Precision over the top-k ranked retrieval.

7.2 Results

7.2.1 Pre-processing
In this section, using the example of VSM, we describe the im-

provement we see in recall, for major improvements in pre-processing.

28

Figure 4: Recall for VSM.

Figure 5: Precision-Recall Curve for VSM.

With the standard pre-processing of tokenization, stop word re-
moval (standard words in MALLET) and markup-removal, the best
recall over the top-20 issues removed was 30%. We observed a in-
crease of 3.01% with the additional pre-processing stages of URL
removal, spam removal and stemming.

Following this, as described in Section 5, we systematically var-
ied the IDF threshold to expand our list of stop words. As seen in
the figure, the recall improved until IDF = 4, and started dropping
off gradually. We choose IDF = 4 for the remainder of the analy-
sis. However, with this expanded list of stop word,s we observed
only a 1.57% increase in recall.

By manually sampling we observed that our true recall was 67%.
Further, as noted during our manual sampling, many of the mis-
matches resulted from the appearance of the template issue state-
ments in the issue description.

7.2.2 VSM
As anticipated, after removing frequent sentences, we observed a

dramatic increase in recall. In Figure 4, we report the recall values
for the top-k ranked retrieval (with k = 20) and our observation
from manual sampling. We observe that our best recall achieved is
83%.

Figure 6: Recall for LDA

Figure 7: Recall for VSM+LDA combined approach.

As we pick the top-20 similar issues, ranked by similarity, we are
able to observe the variation in precision with recall and thereby re-
port the mean average precision. We plot the PR-curve in Figure 5.
We observe that the best precision is about 50% and for a 5% im-
provement in recall, there is a corresponding 20% drop in the best
precision.

7.2.3 LDA
Similar to our observation in the case of VSM, we observe that

the recall improves with the increase in k. Comparing against VSM,
if only the most relevant issue was picked, LDA offers only a recall
of 26% whereas the same was 49% in the case of VSM. Increasing
the number of issues retrieved from 1 to 20, for LDA, we observe
an improvement of recall of roughly 20%. Similar to the previous
case, on sampling manually, we realize that the retrieval of similar
issues is much better and the true recall is 54%. This is worse than
what we observed for VSM.

7.2.4 LDA + VSM
Further, by combining LDA and VSM, we observe an improve-

29

Figure 8: Screenshot from the demonstration portal.

Table 4: Summary of results. Note: The MAP values here are
approximated using the area under the PR-curve.

VSM LDA LDA+VSM
Best recall 83% 54% 78%

MAP 34.66% 6.46% 7.14%

ment over pure LDA, but the overall performance is still less than
that of pure VSM. By selecting only the most similar issue, the
recall is 42%. Contrary to the other two techniques, we do not ob-
serve any significant improvement in recall by increasing the num-
ber of issues (top-k) retrieved. With k = 20, the recall has only im-
proved by 4%. However, as observed previously, while sampling
manually, we observed that our true recall is much better at 78%
which is still less than that of pure VSM.

In Table 4, we summarize the best observed recall values (from
manual sampling) and the calculated MAP over exact matches against
the set of original issues (G).

7.3 Demonstration Portal
To demonstrate the duplicate issue detection capability, we de-

signed a proof-of-concept web portal where users can enter an is-
sue, and the portal will use VSM to retrieve the top-20 issues related
to the query, ranked in descending order of similarity. We use only
a small subset of the issues (about 500 issues) for this purpose. This
is due to the fact that our implementation of VSM is not optimized
for speed and scale which results in long processing times.

Hence, for demonstration purposes, we limit ourselves to this
subset of issues. In Figure 8, the screen shot of the demo portal is
shown where the user issued query was “Farsi language support",
and the retrieved top-20 issues are listed. In this example, the most
similar issue found was “Issue 14815" and the actual issue is over-
laid in the graphic for the reader’s understanding.

The portal is live and available for public access9.

9https://is.gd/aospduplicates

8. CONCLUSION AND FUTURE WORK
We have presented our first steps toward automating detection of

duplicated bugs for AOSP. We show some examples for the good,
bad and ambiguous cases of issues picked as duplicate using our
proposed approach, as shown in Figure 9. Figure 9(a) illustrates a
good case example where the original issue, the issue marked as
duplicate and the one picked by our approach were very similar.
Figure 9(b) is a bad case example, as the topic of sending messages
in Android 2.2, was picked as issues about sending mails in Gmail.
Figure 9(c) shows an ambiguous example.

In summary, our findings indicate the use of VSM to work suf-
ficiently well in detecting duplicate issue for AOSP, compared to
other techniques like LDA, and LDA + VSM. We designed a proof-
of-concept web portal where VSM technique is used to retrieve the
top-20 issues related to a user-defined query. We demonstrated that
classification technique using VSM achieves higher precision (of
83% from manual pick and 67% from Top 20 retrievals). These
results informed us of a system that could benefit active users of
AOSP in finding bug reports more efficiently.

In the future, we seek to extend our implementation to provide
for other language development support tool. Second, we will ex-
pand our study to evaluate larger data sets, especially since we
disregarded comments, code and traces in this study. Technical
terminologies like class names, methods, and errors, particularly,
make common query keywords among expert users. We also in-
tend to continuously stream the AOSP issue tracker and update the
dataset periodically. Finally, we will expand our system to exploit
the package hierarchies in Android API, which we believe could
achieve better inference rules.

9. ACKNOWLEDGEMENTS
This work was supported by Singapore Ministry of Education

Academic Research Fund Tier 2 under research grant MOE2011-
T2-1001 and by the National Research Foundation, Prime Minis-
ter’s Office, Singapore under its IDM Futures Funding Initiative.
Kasthuri Jayarajah is supported by an A*STAR Graduate Scholar-
ship. All findings and recommendations are those of the authors
and do not necessarily reflect the views of the granting agency, or
Singapore Management University.

10. REFERENCES

[1] Getting started with topic modeling and mal-
let. http://programminghistorian.org/ lessons/
topic-modeling-and-mallet/ last accessed: June 10, 2016.

[2] Idc 2015 android market share predictions. http://www.
idc.com/prodserv/smartphone-os-market-share.jsp last ac-
cessed: June 18 2016.

[3] K. Aggarwal, T. Rutgers, F. Timbers, A. Hindle, R. Greiner,
and E. Stroulia, Detecting duplicate bug reports with software
engineering domain knowledge, In Proceedings of the 2015
IEEE 22nd International Conference on Software Analy-
sis, Evolution, and Reengineering (SANER’15), IEEE, 2015,
pp. 211–220.

[4] Anahita Alipour, Abram Hindle, and Eleni Stroulia, A con-
textual approach towards more accurate duplicate bug report
detection, In Proceedings of the 10th Working Conference on
Mining Software Repositories (MSR’13), 2013, pp. 183–192.

[5] Nicholas Jalbert and Westley Weimer, Automated duplicate
detection for bug tracking systems, IEEE International Con-
ference on Dependable Systems and Networks With FTCS
and DCC (DSN’08), IEEE, 2008, pp. 52–61.

30

(a) Good (b) Bad (c) Ambiguous

Figure 9: Issues Picked by our approach

[6] Nguyen T. T. Nguyen T. N. Lo D. & Sun C. i Nguyen,
A. T., Duplicate bug report detection with a combination of
information retrieval and topic modeling, In Proceedings of
the 27th IEEE/ACM International Conference on Automated
Software Engineering (ASE’12), ACM, 2012.

[7] Nawagata Nilambari, Vintee Chaudhary, and Shivani Gautam,
A survey on automated duplicate detection in a bug reposi-
tory, International Journal of Engineering Research & Tech-
nology (IJERT) 3 (2014).

[8] Gerard Salton, Anita Wong, and Chung-Shu Yang, A vector
space model for automatic indexing, Communications of the
ACM 18 (1975), no. 11, 613–620.

[9] Chengnian Sun, David Lo, Siau-Cheng Khoo, and Jing Jiang,
Towards more accurate retrieval of duplicate bug reports, In
Proceedings of the 2011 26th IEEE/ACM International Con-
ference on Automated Software Engineering (ASE’11), IEEE
Computer Society, 2011, pp. 253–262.

[10] Chengnian Sun, David Lo, Xiaoyin Wang, Jing Jiang, and
Siau-Cheng Khoo, A discriminative model approach for ac-
curate duplicate bug report retrieval, In Proceedings of
the 32nd ACM/IEEE International Conference on Software
Engineering-Volume 1, ACM, 2010, pp. 45–54.

31

View publication statsView publication stats

https://www.researchgate.net/publication/307090213

